
Postprint, September 2019

Availability and Scalability Optimized Microservice
Discovery from Enterprise Systems

Adambarage Anuruddha Chathuranga De Alwis1, Alistair Barros1,
Colin Fidge1, and Artem Polyvyanyy2

1 Queensland University of Technology, Brisbane, Australia
{adambarage.dealwis,alistair.barros,c.fidge}@qut.edu.au

2 The University of Melbourne, Parkville, VIC, 3010, Australia
artem.polyvyanyy@unimelb.edu.au

Abstract. Microservices have been introduced to industry as a novel architectural
design for software development in cloud-based applications. This development
has increased interest in finding new methodologies to migrate existing enterprise
systems into microservices to achieve desirable performance characteristics such
as high scalability, high availability, high cohesion and low coupling. A key chal-
lenge in this context is discovering microserviceable components with promising
characteristics from a complex monolithic code base while predicting their result-
ing characteristics. This paper presents a technique to support such re-engineering
of an enterprise system based on the fundamental mechanisms for structuring its
architecture, i.e., business objects managed by software functions and their inter-
actions. The technique relies on queuing theory and business object relationship
analysis. A prototype for microservice discovery and characteristic analysis was
developed using the NSGA II software clustering and optimization technique
and has been validated against two open-source enterprise systems, SugarCRM
and ChurchCRM. Our experiments demonstrate that the proposed approach can
recommend microservice design which improves scalability, availability and ex-
ecution efficiency of the system while achieving high cohesion and low coupling
in software modules.
Keywords: Microservice discovery, system reengineering, system optimization

1 Introduction

Microservices were introduced around 2011 to the software industry and interest in
microservices has increased over the years due to the development and deployment ad-
vantages they provide over monolithic system architectures. A microservice architecture
encourages development of applications as small independent services, each running its
own process and while communicating with other microservices via RESTAPI calls [1].
Even though different industry giants such as NetflixTM, and nowTwitterTM, eBayTM and
AmazonTM have adapted their systems to microservices, they have not been adopted for
the dominant form of software in businesses, namely enterprise systems, limiting such
systems’ evolution and their ability to exploit the full benefits of modern cloud-enabled
platforms such as Google Cloud, Amazon AWS and IoT [2].
Enterprise systems, such as enterprise resource planning (ERP) and customer relation-

shipmanagement (CRM), are large and complex and contain complex business processes

encoded in application logic managing business objects, in typically many-to-many rela-
tionships [3]. Restructuring such a system into microservices is an error-prone task due
to several reasons. Firstly, it is difficult to identify the highly cohesive and loosely cou-
pled functions and operations which could be usefully separated as microservices, by a
vast code base. Secondly, it is challenging to figure out an optimal splitting of the system
functionalities as fine-grainedmicroservices while minimizing the communication costs
(i.e., service calls) between them. Thirdly, it is difficult to predict the system’s scalability
and availability behaviour based on the components identified as microservices without
implementing them. The third issue is a major concern because implementing a system
to validate its scalability and availability performance incurs additional cost and time,
and the developers might need to conduct several implementations to validate the best
configuration for the microservice system’s development.
Automated software re-engineering techniques have been proposed to improve the ef-

ficiency of transforming legacy applications and structures [4], into a Service-Oriented-
Architecture (SOA) using static analysis techniques (i.e., source code analysis) [5] and
dynamic analysis techniques (i.e., execution log and pattern analysis) [6]. However, these
techniques have, to date, not been applied to the re-engineering challenges of microser-
vices. More specifically, there has been no research conducted in the area of deriving
microservices from enterprise systems while evaluating the scalability and availability
of the resulting microservices.
This paper presents discovery techniques that support the identification of suitable

consumer-oriented parts of enterprise systems which could be re-engineered as mi-
croservices based on knowledge gained through business object relationships and their
execution patterns while analysing their scalability and availability characteristics to
provide better microservice configurations. A microservice recommendation process
was developed using the Non-dominated Sorting Genetic Algorithm (NSGA) II and
was validated against two open source customer management systems, SugarCRM3 and
ChurchCRM4. Our experiments showed that our methodology can be used to discover
microservices which improve system structure and achieve high scalability, availability
and execution efficiency of the system while achieving high cohesion and low coupling
in software modules.

2 Related Work

Restructuring existing monolithic systems into new architectures has been an important
branch in the software engineering research community. However, being a relatively
new concept to the business-centric software industry, microservices have had very
limited research conducted in the area of system re-engineering and restructuring. Even
though there are some approaches for microservice discovery, a better understanding
of monolithic to microservice migration can be obtained through the manual migration
report of Balalaie et al. [7]. They describe the complexity associated with the system re-
engineering process while pointing out the importance of considering business objects

3 https://www.sugarcrm.com/
4 http://churchcrm.io/

and their relationships in the system migration process. Further, Martin Fowler empha-
sizes the importance of adapting business object relationships in microservices [8] by
mentioning Domain Driven Design (DDD) principles [9]. DDD specifically focuses on
identifying business objects that are related to the same domain, which helps to develop
software components that are highly cohesive and loosely coupled.
Even though there is research about discovering business objects in enterprise systems

and analysing their complex relationships [10, 11], research related to re-engineering
enterprise systems while considering the enriched semantic insights available through
the complex relationship of business objects is limited. As described by Fuguo et al.,
business objects in enterprise system play a major role in the overall system structure
and their effect can even be seen at the API level of the system [12]. A proper evaluation
of such relationships and identification of functions related to each business object leads
to software components or microservices which align with the single responsibility
principle [13], which makes the components highly cohesive and loosely coupled.
Apart from business object relationships, the number of execution calls between

different microservices plays a major role in defining high performing microservices,
because an excessive number of network calls can increase response times while de-
creasing the availability of the service [1]. Available research related to microservice
discovery has considered the number of calls between different methods to suggest mi-
croservices for the developer by analysing system execution logs [14,15]. However, such
research has not considered the possibility of evaluating scalability and availability to
derive better microservice configurations from enterprise systems. Even though there
is queuing theory based research about evaluating system scalability [16] and ways of
suggesting system configurations while evaluating system workload [17], applying such
theories to microservice discovery has yet to be done, and is the focus of our research
herein.

3 Microservice Discovery and Optimization Model

To discover microservices with desirable characteristics we developed a three-step ap-
proach, which is illustrated in Fig. 1. First we perform static analysis on the system
in order to derive the business objects it manipulates. To achieve this, we extract and
evaluate all the SQL queries in the given enterprise system’s code and identify the
relationships between database tables. These relationships are then used to derive the
business objects according to the approach described byNooijen et al. [10]. In the second
step, a behavioural analysis is performed in order to generate and extract data related
to system execution. For this we execute the system, simulating the users’ behaviour
with the help of Selenium scripts. These simulations generate system execution logs
which are then used to generate call graphs related to the executions. Finally, as the third
step, all the structural and behavioural details generated are provided to an optimization
algorithm in order to discover a high performing system partitioning for microservices.
The optimization criteria were derived by answering the four research questions below.

RQ1: How can we derive highly cohesive components out of a given enterprise system
which will provide better microservices?

In the microservice literature, the bounded context related to the DDD is presented as
a promising design rationale for identifying microservices. According to this rationale,
each microservice should correspond to a single and defined bounded context, such that
all the operations in the microservice should correspond to the changes in that particular
context [1]. Generally, each bounded context can be defined as an artifact or a business
object in an enterprise system [7]. As such, discovering the business objects in an
enterprise system and extracting the operations performed on each business object leads
to the discovery of microservices with a proper bounded context. In this situation, each
microservice is changed only for a single reason (i.e., each microservice is aligned with
the single responsibility) which leads to a highly cohesive microservice system. As such,
our optimization algorithm should group business objects and operations related to (i.e.,
performed on) each business object into different clusters. To evaluate the optimization
level of such clustering we implemented the BO and operation clustering evaluation
(i.e., 3a in Fig. 1) as the third step in our process.

Structural Analysis

System Operation
Extraction &

Catergorization
Business Object

Derivation

Behavioural Analysis

System Execution
Generation

Call Graph
Generation

Microservice
Recommendation

Software System

1

2

BO and Operation
Clustering
Evalaution

Execution Call Cost
Evaluation

Execution Time
Evaluation

Provisioning
Evaluation

3a

3

3b

3c

3d

Fig. 1. Overview of our microservice discovery approach.

RQ2: What is the criterion needed to evaluate the coupling between two microservice
components?
Coupling can be defined as the dependency evaluation criterion between two classes,

packages or modules [18]. Given three software packages ‘A’, ‘B’, ‘C’, if there is a
higher number of calls between ‘A’ and ‘C’ than ‘A’ and ‘B’, then one can define that ‘A’
and ‘C’ are more tightly coupled than ‘A’ and ‘B’, because the number of interactions
between ‘A’ and ‘C’ is higher than the number of interactions between ‘A’ and ‘B’. In fact
this is one of the criteria used in software re-modularisation when clustering software
packages to achieve better coupling [5,18]. If software packages are developed properly
there should be low coupling between packages (i.e., a low number of inter-package
calls) and high coupling between the classes in the same package (i.e., a high number of
intra-package calls) [5, 18]. Similarly, when defining microservices, one should choose
the level of operation clustering to minimize inter-microservice communication while
maximizing intra-microservice communication. As such, to evaluate the coupling in
microservice discovery we implemented an execution call cost evaluation (i.e., 3b in
Fig. 1) step in our process.

RQ3: What is availability of a software system and how can we measure it?
Availability of a system can be defined in two perspectives, namely the probability

that a system is operational at a given time and the probability of the system providing
a response to the customer within a given time limit. The basic method to measure the
system’s operation time is to calculate the ratio between the service up time and the total
time [19]. This measure provides an idea about the probability of service unavailability
experienced by a customer. However, sometimes systems take more time than expected
to provide a response to the customer even though the system is available. If the response
time is too long then customers tend to leave the system [20]. Generally, the service
up time of a given system is based on the particular environment and the execution
situation. As such, it is difficult to predict such behaviour without an implementation.
However, when it comes to the response time one can predict it based on the time it
takes to transfer a message between two microservices and the time it takes to execute
that particular message.

0 1 2 n-1 n n+1

λ λ λ λ λ λ

μ μ μ μμμ

....

....

Fig. 2. Queuing model for a single microservice process.

0, 0 1, 1 1, 2 1, k-2 1, k-1 1, k

2, 1 2, 2 2, k-2 2, k-1 2, k

3, 1 3, 2 3, k-2 3, k-1 3, k

λ λ λ λ λ λ

λ λ λ λ λ

λ λ λ λ λ

μ μ μ μμ

μ μ μ μμμ μ μ μμ

Fig. 3. Queuing model for a multiple microservices process.

In the literature, for different predictions related to system provisioning and perfor-
mance, monitoring queuing theory has been used as reliable method [21, 22] and it has
been clearly noted that such predictions can achieve solutions close to the corresponding
real world scenarios [16]. In our work, we have considered two possible scenarios related
to microservice execution. The first scenario would be where only a single microservice
is processing customer requests. The second scenario would be the situation where there
are multiple microservices in the system and they interact with each other to process
a customer request. In Fig. 2 each circle with a number represents a microservice in-
stance of the same microservice. As such, Fig. 2 showcases the scenario where multiple
microservice instances will be created to support customer requests at a given time.

Similarly, in Fig. 3, the circles represent the microservice instances. In this situation
the first comma-separated number inside the circle represents the microservice and the
second number represents the instance of that microservice. For example, if we take
‘1,2’, this represents the second instance of the first microservice. As such, in Fig. 3, we
have depicted three microservices (1, 2, 3) with their related instances. The first scenario
can be defined using a birth and death process in queue modeling as depicted in Fig. 2
while the second one can be defined using a matrix as in Fig. 3. In both Figs. 2 and 3
variable λ is the request arrival rate and µ is the execution rate of the system.
In order to derive the models needed, we assumed that requests arrive at a Poisson rate

but they get processed in an exponential rate and the system is in a steady state. Given
such a model, one can define the response time for a particular customer request to be
the total of the message transfer time (i.e., 1/λ) and execution time (i.e., 1/µ). However,
there are several other variables which should be counted in this process such as the
microservice provisioning time, CPU usage,Memory usage, IO and network bandwidth.
In this work, we assume that all the microservices have the same CPU, Memory and IO
configurations. However, when consider the provisioning time, microservices take time
to start up when there are multiple services residing in the same container [23]. As such,
we add the provisioning time for each microservice to the response time calculation.
Furthermore, we assume that there is enough bandwidth such that an increase in the
number of requests will not reduce the message transformation speed between clients
and microservices [23, 24]. Furthermore, we assume that the operational complexity of
each process related to microservices is similar. These assumptions and models lead to
the execution time evaluation (i.e., 3c in Fig. 1) step in our process.

RQ4: What is scalability of a software system and how can we measure it?
Scalability can be described as the ability of a cloud layer to increase its capacity

by expanding its resource quantity (e.g., CPU and Memory) by consuming lower layer
resources [26]. A more advanced concept of scalability would be elasticity which is a
measure of resource provisioning and de-provisioning over time. According to Herbst
et al., one can calculate provisioning characteristics by monitoring the change in the
amount of resources allocated and the time it takes to allocate those resources [27].
Generally, one can define the amount of memory required for request processing to be
dependent on the data transferred into the system and the amount of data transferred
within the system. As such, in order to derive the amount of memory allocated to each
microservice, we use the number of inter-microservice and intra-microservice calls.
The provisioning times are simply derived from the experimental results of Amaral et
al. [23]. In this scenario we assume that the microservice allocates its total memory
requirement in the provisioning time and until that the system is in an under-provisioned
state. As such, the system which spends less time and uses fewer resources in an under-
provisioned state provides better scalability. This leads to the provisioning evaluation
(i.e., 3d in Fig. 1) step in our process.
A detailed overview of the algorithm used to implement the above four criteria is

provided in Section 4.

4 NSGA II Optimization

In order to discover an optimal microservice configuration while evaluating the four
criteria described in Section 3, we chose the Non-dominated Sorting Genetic Algorithm
II (NSGA II) which is a multi-objective optimization algorithm which provides an opti-
mal set of solutions while achieving global optima, when there are multiple conflicting
objectives to be considered [28]. NSGA II can provide near optimal solutions when used
to cluster software packages and classes to achieve high cohesion and low coupling [5].
Algorithm 1 providesmicroservice configuration solutions using three execution steps

and requires the population size (n), number of generations (Gen), chromosome length
(C_Len), crossover probability (Cr_Prob) and mutation probability (Mut_Prob) as input
data. Apart from the above standard parameters, our algorithm requires further input,
such as the BOs of the system (B), and execution graph nodes (N) and their relationships
(R) extracted from the execution graphs. These details can be extracted from a software
system based on the methodology described by De Alwis et al. [14]. The population
size (n) defines how many chromosomes are populated in a single generation, while
the number of generations (Gen) defines the number of times the algorithm generates
different populations before it stops. The crossover probability (Cr_Prob) and muta-
tion probability (Mut_Prob) are responsible for defining the probability of performing
crossovers and mutations on chromosomes. Interested readers can find further details
about NSGA II elsewhere [28].
Here onwards we describe our algorithm variant based on the hypothetical execution

graph depicted in Figure 4. In the graph, each node illustrates an operation executing in
the system and the ‘BO’s illustrate the business objects that each operation executes on.

A B

C

D

F G H

E

BO1 BO2 BO3

4

8

7

3

2

3

4

5

5

Fig. 4. Hypothetical execution graph of a system process.

The first step of the algorithm involves the SYNPOP function which synthesizes a
parent population of the given size n (see line 1). Function SYNPOP uses a random
number generator to generate chromosomes of length C_Len, where a chromosome is a

sequence of numbers each representing a node in the execution graph. A chromosome
generated for the execution graph in Fig. 4 can be represented as a sequence of numbers
‘0, 1, 2, 3, 4, 5, 6, 7’, in which the numbers refer to the corresponding graph nodes ‘A,
B, C, D, E, F, G, H’, such that 0 refers to A, 1 refers to B, etc. Apart from generating the
parent population, SYNPOP calculates and stores the fitness for each parent. The fitness
calculation is preformed in two steps. First, the algorithm calculates the maximum cost
(Maxc) for a chromosome as

∑C_Len
i=0 2i which can achieve a highest value of 255 (i.e.,

1 + 2 + 4 + 8 + 16 + 32 + 64 + 128). Then the algorithm calculates the costs for the four
criteria that we described in Section 3. Sincewe need to achieve high cohesion as our first
objective, the algorithm should be able to cluster system operations with their related
business objects. To calculate such cohesion the cost function should be able to represent
towhich extent the nodes related to the sameBOhave been grouped together. As such, for
each chromosome, the clustering cost (Costc) is calculated as Costc =

∑Clus
i=0

∑d
j=0 2d ,

where d is the distance from the first occurrence of a node related to a particular BO to
the next occurrence of the node related to the same BOwithin the chromosome and Clus
is the number of business object clusters. When considering the scenario given in Fig. 4
high cohesion can be achieved by clustering the operations into three groups containing
nodes ‘A’, ‘B, C, D, F’ and ‘E, G, H’ based on the business objects they execute on. This
leads to a total clustering cost of 23 (i.e., 1 + 15 + 7).
Similarly, to achieve low coupling (i.e., the second objective described in Section 3),

the cost of execution calls (Coste) between clusters is computed as the sumof inter-cluster
calls between the different clusters. For the running example, i.e., the chromosome ‘0,
1, 2, 3, 5, 4, 6, 7’, this sum would be 4 + 3 + 3 = 10, because the costs of calls
between the pairs of clusters in ‘0’, ‘1, 2, 3, 5’, ‘4, 6, 7’, are ‘4’, ‘3’ and ‘3’. Further
details for calculating the first two objectives for the NSGA II algorithm can be found
elsewhere [14].
Availability (i.e., the third objective described in Section 3) is dependent on the

time it takes to provide a response to a customer. As such to derive a cost function
to measure availability (Ava) we used data related to inter-cluster and the intra-cluster
calls. For example, if we take the number of inter-cluster calls between ‘0’, ‘1, 2, 3,
5’, ‘4, 6, 7’ it would be 4 and 6, and the number of intra-cluster calls would be 0, 24
and 7. We consider the number of inter-cluster calls as the number of requests sent to
each microservice and the number of intra-cluster calls as the number of requests passed
within themicroservice.As such,we define the total amount of time needed to transfer the
data to a microservice (i.e., λ in Figs. 2 and 3) as the number of inter-cluster calls (Calli)
multiplied by the data packet size (Datas) divided by the bandwidth of the network (Band)
(i.e., (Calli × Datas)/Band). The execution time of a microservice (i.e., µ in Figs. 2 and
3) is calculated as the number of intra-cluster calls (Calle) multiplied by the data packet
size (Datas) divided by the process complexity (Com) (i.e., (Calle × Datas)/Com). In this
calculation, we assumed that all the packets transferred have the same amount of data and
each packet is of themaximumTCP packet sizewhich is 64kb. Furthermore, we assumed
that the bandwidth is equal to the general Ethernet bandwidth of 10Mbit/s. The time taken
for internal data transfer is not taken into consideration because microservices have the
same transfer speed as a native system which is negligible [29]. The process complexity
is given a fixed value assuming that none of the operations are related to floating

point executions [25]. Since provisioning time (Pro) also affects the response time of a
microservice we add provisioning time values obtained from Amaral et al. [23] to the
total response time. Since we evaluate two scenarios where only a single microservice
responses to a customer request (as depicted in Fig. 2) and multiple microservices
response to customer requests (as depicted in Fig. 3), two cost functions were defined and
evaluated. For a single microservice with x number of operational instances we defined
the cost function as Ava = ((Calli × Datas)/Band + (Calle × Datas)/Com + Pro) × x.
For a microservice system with y number of different microservices, in which each
microservice has x number of operational instances we defined the cost function as
Ava = ((Calli × Datas)/Band + (Calle × Datas)/Com × (y − 1) + Pro) × x.

Algorithm 1: NSGA II Algorithm adapted for microservice discovery
Input: n,Gen,C_Len,Cr_Prob,Mut_Prob, B, N, R
Output: A list of clustering of BOs and OPs for MSs

1 Popp =
〈
pop1 , . . . , popn

〉
:= SYNPOP(n,C_Len, γ,B,N,R);

2 Popc := Rankf := 〈〉;
/* Perform crossover and mutation to generate child population */

3 while Popc.length() < n do
4 if RANDOM(0, 1) < Cr_Prob then
5 Popc := CROSSOVER(Popp,Popc);
6 if RANDOM(0, 1) < Mut_Prob then
7 Popc := MUTATION(Popp,Popc);
8 end
9 for each i ∈ [1 ..Gen] do

10 Popt := Popp + Popc ;
11 Rankf =

〈
rankf

1 , . . . , rankf
m

〉
:= FNDS(Popt);

12 if i = Gen then
13 break;

/* Identify the Pareto front of the generated population and rank them */

14 Popc := 〈〉;
15 for k ∈ [1 ..m] do
16 if length(rank f

k
) < (n − length(Popc)) then

17 Popc := Popc + rankf
k;

18 else
19 Popc := Popc + CCS(rankf

k);
20 end
21 Popp := Popc; // Initialize new parent population

22 Popc =
〈
popc

1 , . . . , popc
n

〉
:= SYNCHD(Popp);

23 end
24 return (Rank f)

As described in Section 3, to calculate scalability (Scal) we need to figure out the
amount of resources used and the time taken to provision the resources. Here we
assume that the total amount of memory required for each microservice is similar to the
total number of packets it receives and processes. Thus we calculate the total memory

requirement for a microservice as (Calli + Calle) × Datas and the provisioning time
values are obtained from Amaral et al. [23]. For a microservice system with x instances
we defined the cost function as Scal = (Calli+Calle)×Datas× x. The fitness for a given
chromosome is finally obtained as fitness = Maxc − (Costc + Coste + Ava + Scal).
The second step of the algorithm generates the child population by performing

crossover operations and mutation operations on the parent chromosomes (see lines
3–8). In order to perform the crossover operation, the algorithm selects two parents
using binary tournament selection [28]. This is performed by randomly identifying two
parent chromosomes and extracting the chromosomewith the highest fitness value out of
them. After identifying two parent chromosomes for crossover, the algorithm splits the
first parent chromosome from a predefined position (normally half of the chromosome’s
length) and includes it as the first part of the child chromosome. As the second part of
the chromosome it includes the genes extracted from the second parent which are not in
the first part of the child chromosome.
After generating the first child population, the algorithm generates Gen new popula-

tions, (refer to lines 9–23 in Algorithm 1) which constitutes the third (and last) step of the
algorithm. First, the current total populationPopt is computed at line 10 by concatenating
the parent population Popp and the child population Popc. Next, the algorithm calculates
the non-dominated fronts, or the Pareto fronts, of the total population. A non-dominated
front contains the chromosomes which have the optimal values for the four objectives
that were defined above, namely the clustering cost (Costc), cost of execution calls
(Coste), availability cost (Ava) and scalability cost (Scal). The chromosome’s optimiza-
tion of node clustering is calculated as the difference between the maximum possible
cost of the chromosome and cost of its node clustering (i.e., Maxc − Costc). Similarly,
the chromosome’s optimization of execution calls is calculated as the difference between
the maximum possible cost of the chromosome and the cost between its cluster calls
(i.e., Maxc − Coste). The chromosome’s optimization of availability and scalability is
similarly calculated by obtaining the difference between maximum possible cost of the
chromosome and cost of scalability and availability (i.e., Maxc − Ava and Maxc − Scal).
The non-dominated chromosomes in Popt are extracted as the first front using function
FNDS (see line 11). After extracting the first non-dominated front, the algorithm evalu-
ates the other chromosomes in Popt and identifies the second non-dominated front. This
process is repeated until all the chromosomes are categorised into different fronts (2,
. . ., m), where each generated front may contain multiple non-dominated chromosomes.
Once the Pareto fronts are obtained, a new child population is created by concatenating

the ranked fronts in several steps (see lines 14–20). First, the algorithm verifies that there
is enough space in the child population to add all the chromosomes in each ranked front
rankf

k by comparing the remaining space in the child population (n − length(Popc))
with the rank front size length(rankf

k) (see line 16). If there is enough space, the rank
front is directly added to the child population (see line 17). If there is no space, then
the algorithm identifies the most prominent chromosomes in the front using a crowd
comparison sort [28] (see line 19, functionCCS) and assigns them to the child population.
Through the loop of lines 15–20, the algorithm filters out the chromosomes in the total
population Popt with the highest objective fitness values. The new population is used as
the next parent population and again synthesizes a new child population by performing

crossover and mutation (see lines 21–22). Finally, the non-dominated front (the Pareto
optimal solution) Rankf is returned to the user which constitutes the clustering of BOs
and operation nodes in the system to develop MSs (see line 24).

5 Implementation and Validation

In order to validate our microservice discovery and optimization process, a recom-
mender5 was developed based on the algorithms presented in Section 4 and we experi-
mented with it on the SugarCRM and ChurchCRM customer relationship management
systems. A detailed description of the experiments conducted on both systems is pre-
sented in this section.
SugarCRM as a system contains 8116 source files and 600 attributes divided between

101 tables, while ChurchCRM contains 8039 source files and 350 attributes divided
between 55 tables. We generated execution sequences for both systems covering major
functionalities6 such as campaign management, customer management, etc. The exe-
cution logs containing the details about execution sequences, operations and database
tables were captured using the log generation functionality already available in the sys-
tems. These execution logs cannot be directly used by process mining tools to obtain
call graphs. Instead we used our own code7 to convert them into XES format which is
accepted by the Disco process mining tool. These XES files were then analyzed using
Disco8 and call graphs were generated for SugarCRM with 178 unique nodes and for
ChurchCRM with 58 unique nodes. Each node in a call graph represents a unique oper-
ation performed on database tables in the system and the edges between nodes represent
the number of calls between the nodes, similar to Fig. 4.

Discovered MSs: As the initial step, the prototype identified 18 different business ob-
jects related to SugarCRM, such as ‘action control lists’, ‘calls’, ‘contacts’, ‘campaigns’,
‘meetings’, ‘users’, ‘prospects’, ‘accounts’, ‘documents’, ‘leads’, ‘emails’, ‘projects’ and
‘email management’, 11 different business objects related to ChurchCRM, such as ‘cal-
endar’, ‘locations’, ‘deposits’, ‘emails’, ‘events’, ‘family’, ‘group’, ‘property’, ‘query’,
‘users’ and ‘kiosk’. The identified BOs and the call graphs with execution details were
given to the optimization algorithm described in Section 4 and tested against both sce-
narios depicted in Fig. 2 and 3. Both executions provided the same solution deriving 8
MSs for ChurchCRM and 11 MSs for SugarCRM.

Validation Process: Validation of the microservice recommendations was conducted
in two steps. First, we evaluated the improvement of cohesion and coupling of different
modules when clustering the classes based on recommendations provided by our proto-
type. This was achieved through measuring the Lack of Cohesion (LOC) and Structural
Coupling (StrC) of the clusters, as described by Candela et al. [5]. We calculated the
values for the enterprise system by clustering the classes into folders while preserving
the original package structure, and then calculated the values for microservices. The

5 https://github.com/AnuruddhaDeAlwis/NSGAIIFOROptimization.git
6 http://support.sugarcrm.com/Documentation/Sugar_Versions/8.0/Pro/Application_Guide/
7 https://github.com/AnuruddhaDeAlwis/XESConvertor.git
8 https://fluxicon.com/disco/

LOC and StrC values calculated for ChurchCRM are summarized in Table 1 and Ta-
ble 2, respectively, and LOC and StrC values calculated for SugarCRM are summarized
in Table 3 and Table 4, respectively.
Next we validated the performance of the systems by implementing the microservices

suggested by the prototype. In order to achieve this, first we hosted the SugarCRM
and ChurchCRM systems in AWS Cloud. For each system, we used 2 EC2 instances
which individually contained one virtual CPU and memory of 1GB. The data related
to the systems were hosted in a MySQL relational database in AWS, which has one
virtual CPU and storage of 20GB. A clear idea of this implementation can be obtained
through the ‘Enterprise System’ section depicted in Fig. 5. These systems were then
tested against 200 and 400 executions generated by 4 machines simultaneously for
ChurchCRM and 100 and 200 execution generated by 4 machines simultaneously for
SugarCRM, simulating customer requests, while recording their total execution time, av-
erage CPU consumption, and average network bandwidth consumption. For SugarCRM,
we simulated the functionality related toCampaign management, while for ChurchCRM
we simulated the functionality related to People management. For the simulations, we
used Selenuim9 scripts which executed the system similar to a real user. The Average
CPU consumption of EC2 instances and DB instances and Average Network usage for
ChurchCRM and SugarCRM enterprise system are listed in the first two rows of Table 5
and 9, respectively.
After obtaining the results for the enterprise systems, we needed to evaluate the

effectiveness of introducing a single microservice (i.e., the scenario depicted in Fig.2)
to the system based on the suggestions provided the by the prototype. As such, for
SugarCRM we introduced a microservice which manages ‘prospect’ BO with its subset
of operations suggested by the prototype and for the ChurchCRM we introduced a
microservice which manages ‘family’ BO with its subset of operations suggested by the
prototype. Each microservice was hosted on an AWS elastic container service (ECS),
which has two virtual CPUs and a total memory of 2GB, as depicted on the right side
of Fig. 5. The data related to the BOs of each microservice was stored in one MySQL
relational database instance with one virtual CPU and total storage of 20GB. Next, the
executions were performed on both enterprise systems again. Since microservices are
extended parts of the enterprise systems in these executions, the enterprise systems used
API calls to pass the data to the microservices and the microservices processed and
sent back the data to the enterprise systems. The data in the microservice databases and
enterprise system databases were synchronized using the Amazon database migration
service replication instance. Then, we again conducted the same set of experiments while
introducing operations to the ‘prospect’ BO microservice and ‘family’ BO microservice
which contradicted the optimal suggestions given by the prototype. In this situation
we introduced operations related to ‘user’ BO to both microservices. The objective
of this is to validate the effectiveness of the suggestions provided by the prototype
(i.e., to evaluate the effectiveness of clustering operations with BOs as suggested by
the prototype). The results obtained for ChurchCRM and SugarCRM regarding this
experiment are summarised in Tables 5 and 9, respectively. In the tables ‘Legacy &

9 https://www.seleniumhq.org/

Table 1. ChurchCRM ES vs MS System Lack of Cohesion Value comparison.
System Type 1 2 3 4 5 6 7 8 9 10 11
Original ES 61 188 853 7 4 1065 31 378 3064 13 17
MSs 61 77 666 33 8 1453 73 351 3802 3 10

Table 2. ChurchCRM ES vs MS System Structural Coupling Value comparison.
System Type 1 2 3 4 5 6 7 8 9 10 11
Original ES 41 26 61 17 16 70 29 31 123 27 19
MSs 41 25 8 37 20 64 33 31 121 3 7

Table 3. SugarCRM ES vs MS System Lack of Cohesion Value comparison.
System Type 1 2 3 4 5 6 7 8 9 10 11 12
Original ES 42 342 229 65 63 581 53 26 64 14 64 33
MSs 11 291 208 65 42 547 53 26 64 14 53 33

Table 4. SugarCRM ES vs MS System Structural Coupling Value comparison.
System Type 1 2 3 4 5 6 7 8 9 10 11 12
Original ES 22 58 32 21 30 57 20 17 31 20 19 48
MSs 12 57 32 21 29 57 20 17 31 20 19 48

Table 5. Legacy vs single MS results for ChurchCRM.
System Type No of

Executions
No of
Packets
Sent

Ex.
Time
(s)

Avg CPU
Util (EC2)

Avg CPU
Util (DB)

Avg Network
(Kb/s)

Original ES 200 29768 2580 4.27 1.6 6.57
Original ES 400 37579 4440 5.14 1.68 4.06
ES& Single MS (1) 200 28490 2220 3.06 2.365 11.42
ES& Single MS (1) 400 39620 4200 2.945 2.26 9.26
ES& Single MS (2) 200 33462 2340 3.153 2.25 11.45
ES& Single MS (2) 400 36936 4380 3.04 2.125 11.322

Table 6. Legacy vs Single MS System characteristics comparison for ChurchCRM.
Campaign Type Scalability

[CPU EC2]
Scalability
[CPU DB]

Scalability
[Network

DB]

Avail-
ability
[200]

Avail-
ability
[400]

Effi-
ciency
[200]

Effi-
ciency
[400]

Original ES 2.819 2.459 1.448 97.727 97.368 1.000 1.000
ES& Single MS (1) 2.477 2.459 2.087 97.37 97.228 1.162 1.057
ES& Single MS (2) 3.061 2.998 3.138 97.5 97.33 1.103 1.014

Table 7. Legacy vs Multiple MS results for ChurchCRM.
System Type No of

Executions
No of
Packets
Sent

Ex.
Time
(s)

Avg CPU
Util (EC2)

Avg CPU
Util (DB)

Avg Network
(Kb/s)

Original ES 200 29768 2580 4.27 1.6 6.57
Original ES 400 37579 4440 5.14 1.68 4.06
ES & Multi MS (1) 200 25900 2100 2.397 2.567 7.46
ES & Multi MS (1) 400 35713 4260 2.737 2.29 8.521
ES & Multi MS (2) 200 26040 2100 2.313 2.14 7.72
ES & Multi MS (2) 400 35926 4260 2.325 2.15 7.118

Table 8. Legacy vs Multiple MS System characteristics comparison for ChurchCRM.
Campaign Type Scalability

[CPU EC2]
Scalability
[CPU DB]

Scalability
[Network

DB]

Avail-
ability
[200]

Avail-
ability
[400]

Effi-
ciency
[200]

Effi-
ciency
[400]

Original ES 2.819 2.459 1.448 97.727 97.368 1.000 1.000
ES & Multi MS (1) 3.407 2.662 3.408 97.222 97.26 1.229 1.042
ES & Multi MS (2) 2.997 2.992 2.751 97.222 97.26 1.229 1.042

Table 9. Legacy vs single MS results for SugarCRM.
System Type No of

Executions
No of
Packets
Sent

Ex.
Time
(s)

Avg CPU
Util (EC2)

Avg CPU
Util (DB)

Avg Network
(Kb/s)

Original ES 100 16417 2400 4.27 1.6 6.57
Original ES 200 20632 3900 5.14 1.68 4.06
ES& Single MS (1) 100 14318 2100 4.738 1.67 6.496
ES& Single MS (1) 200 19847 3540 2.42 1.58 5.717
ES& Single MS (2) 100 16099 2160 6.0175 1.64 6.465
ES& Single MS (2) 200 22426 3960 5.26 2.1 6.341

Table 10. Legacy vs Single MS System characteristics comparison for SugarCRM.
Campaign Type Scalability

[CPU EC2]
Scalability
[CPU DB]

Scalability
[Network

DB]

Avail-
ability
[200]

Avail-
ability
[400]

Effi-
ciency
[200]

Effi-
ciency
[400]

Original ES 2.206 2.435 4.403 97.56 97.01 1.000 1.000
ES& Single MS (1) 1.0472 1.939 1.804 97.22 96.72 1.143 1.102
ES& Single MS (2) 2.109 3.089 2.366 97.29 97.05 1.111 0.984

SingleMS (1)’ stands for the implementation suggested by the prototype (i.e., the correct
MS implementation) and the ‘Legacy&SingleMS (2)’ stands for the implementationwe
did against the suggestion given by the prototype (i.e., the wrong MS implementation).
Next, we introduced twomicroservices to each system to experiment with the scenario

depicted in Fig.3. For SugarCRM, we introduced two microservices in which one man-
ages ‘prospect’ BO with its subset of operations and the other manages ‘user’ BO with
its subset of operations. Similarly for ChurchCRM we introduced two microservices in

Table 11. Legacy vs Multiple MS results for SugarCRM.
System Type No of

Executions
No of
Packets
Sent

Ex.
Time
(s)

Avg CPU
Util (EC2)

Avg CPU
Util (DB)

Avg Network
(Kb/s)

Original ES 100 16417 2400 4.27 1.6 6.57
Original ES 200 20632 3900 5.14 1.68 4.06
ES & Multi MS (1) 200 16417 1920 3.905 2.167 5.716
ES & Multi MS (1) 400 20632 3900 3.861 2.067 5.097
ES & Multi MS (2) 200 41856 2160 4.521 1.73 5.190
ES & Multi MS (2) 400 52920 4140 4.526 1.723 5.899

Table 12. Legacy vs Multiple MS System characteristics comparison for SugarCRM.
Campaign Type Scalability

[CPU EC2]
Scalability
[CPU DB]

Scalability
[Network

DB]

Avail-
ability
[200]

Avail-
ability
[400]

Effi-
ciency
[200]

Effi-
ciency
[400]

Original ES 2.206 2.435 4.403 97.56 97.01 1.000 1.000
ES & Multi MS (1) 3.246 3.131 2.927 96.96 97.01 1.25 1.000
ES & Multi MS (2) 2.926 2.911 3.322 97.29 97.18 1.11 0.942

Region

Availability
Zone 1

Availability
Zone 3

Amazon Database
Migration Service

Availability
Zone 2

Region

Availability
Zone 1

Availability
Zone 3

Availability
Zone 2

Enterprise System Microservice System

Fig. 5. System implementation in AWS for performance evaluation.

which one manages ‘family’ BO with its subset of operations and the other manages
‘user’ BO with its subset of operations. The configuration of the hardware and database
properties of these microservices are similar to the ones we have set up for single mi-
croservices. Again, we executed the total system and obtained the results of 200 and
400 executions for ChurchCRM and 100 and 200 executions for SugarCRM. Then we
again conducted the same set of experiments while introducing operations to ‘prospect’
BO, ‘user’ BO MSs of SugarCRM and ‘family’ BO,‘user’ BO MSs of ChurchCRM
which contradict the optimal suggestions given by the prototype. As detailed earlier,
the objective of this is to validate the effectiveness of the suggestions provided by the
prototype. The results obtained for ChurchCRM and SugarCRM regarding this experi-
ment are summarised in Tables 7 and 11, respectively. In the tables, ‘Legacy & Multi
MS (1)’ stands for the implementation suggested by the prototype (i.e., the correct MS

implementation) and the ‘Legacy &Multi MS (2)’ stands for the implementation we did
against the suggestion given by the prototype (i.e., the wrong MS implementation).
Based on the attained values, we calculated the scalability, availability, and execution

efficiency of the different combinations, and the obtained results are summarized in
Tables 6, 8, 10 and 12. Scalability was calculated according to the resources, usage over
time, as described by Tsai et al. [30]. In order to determine availability, first we calculated
the time taken to process 100 packets when a particular microservice is not available.
Then, we measured the difference between the total uptime and total downtime, as
described by Bauer et al. [31]. Efficiency gain was calculated by dividing the total time
taken by the enterprise system to process all requests by the total time taken by the
corresponding combined enterprise and microservice system.

Experimental Results: As described by Tsai et al. [30], the lower the number the
better the scalability. Thus, it is evident from Tables 6, 8 10 and 12 that most of the
time the microservices developed based on the suggestions provided by the prototype
achieve better scalability than the ones we implemented contrary to the suggestions.
When comparing availability, the gain is not significant. However, when comparing
the execution efficiency of the systems it is clear from Tables 6, 8, 10 and 12 that the
microservices developed based on the suggestions managed to process user requests
quicker than the other systems, thus providing the output to the users more quickly.
The lower the lack of cohesion and structural coupling values the better the cohesion

and coupling of the system [5]. As such, it is evident from Tables 1 and 4 that the
microservices derived from the ChurchCRM and SugarCRM systems achieved better
cohesion and coupling values than the legacy system. Thus, the obtained results have
affirmed that the microservices extracted based on the suggestions provided by our
prototype developed based on the algorithm in Section 4 led to microservices which
could provide the same services to users while preserving overall system behaviour and
achieving higher scalability, availability, efficiency, high cohesion, and low coupling.

6 Conclusion
This paper presented a novel technique based on queuing theory and business object
relationships to support re-engineering of an enterprise system as microservices while
improving system characteristics such as scalability, availability, cohesion and cou-
pling. A prototype was developed based on the presented technique and validation was
conducted by implementing the microservices recommended by the prototype for Sug-
arCRM and ChurchCRM. The experiments conducted proved that the microservices
derived based on the suggestions provided by the prototype had the desired character-
istics. In future work, the presented technique can be further improved by evaluating
method level relationships of the system.

References

1. Newman, S.: Building microservices: designing fine-grained systems. O’Reilly Media, Inc.
(2015)

2. 2017 Internet Of Things (IoT) Intelligence Update, https://www.forbes.com/sites/
louiscolumbus/2017/11/12/2017-internet-of-things-iot-intelligence-update/#43aa6f4c7f31.
Last accessed 5 May 2018

3. Magal, S.R. and Word, J.: Integrated business processes with ERP systems. 1st edn. Wiley
Publishing, (2011)

4. Anquetil, N. and Laval, J.: Legacy software restructuring: Analyzing a concrete case. In Soft-
ware Maintenance and Reengineering (CSMR). In: Software Maintenance and Reengineering
(CSMR) 15th European Conference, pp. 279–286 (2011)

5. Candela, I., Bavota, G., Russo, B. and Oliveto, R.: Using cohesion and coupling for soft-
ware remodularization: Is it enough?. In: ACM Transactions on Software Engineering and
Methodology (TOSEM), pp. 24. (2016)

6. Shatnawi, A., Seriai, A.D., Sahraoui, H. and Alshara, Z.: Reverse engineering reusable soft-
ware components from object-oriented APIs. In: Journal of Systems and Software, pp. 442–
460. (2017)

7. Balalaie, A., Heydarnoori, A. and Jamshidi, P.: Migrating to cloud-native architectures using
MSs: an experience report. In: European Conference on Service-Oriented and Cloud Comput-
ing, pp. 201–215. Springer (2015)

8. Microservices a definition of this new architectural term, https://martinfowler.com/articles
/microservices.html. Last accessed 3 May 2018

9. Evans, E.: Domain-driven design: tackling complexity in the heart of software, 1st edn.
Addison-Wesley Professional (2003)

10. Nooijen, E.H.J, van Dongen, B. F. and Fahland, D.: Automatic discovery of data-centric and
artifact-centric processes. In: International Conference on Business Process Management, pp.
316–327. Springer (2012)

11. Lu, X., Nagelkerke, M., van de Wiel, D. and Fahland, D.: Discovering interacting artifacts
from ERP systems. In: IEEE Transactions on Services Computing, pp. 861–873. (2015)

12. Wei, F., Ouyang, C. and Barros, A.: Discovering behavioural interfaces for overloaded web
services. In: Services (SERVICES), 2015 IEEE World Congress, pp. 286–293 (2015)

13. PrinciplesOfOod, http://www.butunclebob.com/ArticleS.UncleBob.
PrinciplesOfOod. Last accessed 7 May 2018

14. De Alwis, A.A.C., Barros, A., Fidge, C. and Polyvyanyy, A., 2018, October. Discovering
Microservices in Enterprise Systems Using a Business Object Containment Heuristic. In
OTM Confederated International Conferences" On the Move to Meaningful Internet Systems"
(pp. 60-79). Springer, Cham. (LNCS, volume 11230)

15. De Alwis, A.A.C., Barros, A., Polyvyanyy, A. and Fidge, C.: Function-splitting heuristics
for discovery of microservices in enterprise systems. In: International Conference on Service-
Oriented Computing, pp. 37–53. Springer, Cham. (LNCS, volume 11236)

16. Salah, K., Calyam, P. and Boutaba, R.: Analytical model for elastic scaling of cloud-based
firewalls. In: Transactions on Network and Service Management, pp.136–146. IEEE (2017)

17. Klock, S., Van Der Werf, J.M.E., Guelen, J.P. and Jansen, S.: Workload-based clustering of
coherent feature sets in microservice architectures. In: 2017 IEEE International Conference
on Software Architecture (ICSA), pp. 11–20. IEEE (2017, April)

18. Patidar, K., Gupta, R. and Chandel, G.S.: Coupling and cohesion measures in object oriented
programming. In : International Journal of Advanced Research in Computer Science and
Software Engineering, (2013).

19. Bauer, E. and Adams, R.: Reliability and availability of cloud computing. JohnWiley & Sons
(2012)

20. Bailis, P., Venkataraman, S., Franklin, M.J., Hellerstein, J.M. and Stoica, I.: Quantifying
eventual consistency with PBS. In: The VLDB Journal, pp.279–302. (2014)

21. Khazaei, H., Barna, C., Beigi-Mohammadi, N. and Litoiu, M.: Efficiency analysis of provi-
sioning microservices. In: IEEE International Conference on Cloud Computing Technology
and Science, pp. 261–268. IEEE (2016)

22. Levy, R., Nagarajarao, J., Pacifici, G., Spreitzer, M., Tantawi, A. and Youssef, A.:Performance
management for cluster based web services. In: Integrated Network Management VIII, pp.
247–261. Springer (2003)

23. Amaral, M., Polo, J., Carrera, D., Mohomed, I., Unuvar, M. and Steinder, M.: Performance
evaluation of microservices architectures using containers. In: Network Computing and Ap-
plications (NCA), pp. 27–34. IEEE (2015)

24. Felter, W., Ferreira, A., Rajamony, R. and Rubio, J.: An updated performance comparison of
virtual machines and linux containers. In: Performance Analysis of Systems and Software, pp.
171–172. IEEE (2015)

25. Huber, N., von Quast, M., Hauck,M. and Kounev, S.: Evaluating andModeling Virtualization
Performance Overhead for Cloud Environments. In: CLOSER, pp. 563–573. (2011)

26. Lehrig, S., Eikerling, H. and Becker, S.: Scalability, elasticity, and efficiency in cloud com-
puting: A systematic literature review of definitions and metrics. In : Proceedings of the 11th
International ACM SIGSOFT Conference on Quality of Software Architectures, pp. 83–92.
ACM (2015)

27. Herbst, N.R., Kounev, S. and Reussner, R.H.: Elasticity in Cloud Computing: What It Is, and
What It Is Not. In: ICAC, pp. 23–27. (2013)

28. Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T.A.M.T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. In: IEEE transactions on evolutionary computation, pp. 182–197.
(2002)

29. Estrada, Z.J., Stephens, Z., Pham,C., Kalbarczyk, Z. and Iyer, R.K.: A performance evaluation
of sequence alignment software in virtualized environments. In: Cluster, Cloud and Grid
Computing (CCGrid), pp. 730–737. IEEE (2014)

30. Tsai, W.T., Huang, Y. and Shao, Q.: Testing the scalability of SaaS applications. In:
Service-Oriented Computing and Applications (SOCA), IEEE International Conference, pp.
1–4. (2011)

31. Bauer, E. and Adams, R.: Reliability and availability of cloud computing, 1st edn. JohnWiley
& Sons (2012)

